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ABSTRACT
Getting the best performance from the ever-increasing number of
hardware platforms has been a recurring challenge for data pro-
cessing systems. In recent years, the advent of data science with
its increasingly numerous and complex types of analytics hasmade
this challenge evenmore difficult. In practice, system designers are
overwhelmed by the number of combinations and typically imple-
ment a single analytics type on one platform, leading to repeated
implementation effort—and a plethora of semi-compatible tools for
data scientists.

In this paper, we propose the “Collection Virtual Machine” (or
CVM)—an extensible compiler framework designed to keep the
specialization process of data analytics systems tractable. It can
capture at the same time the essence of a large span of low-level,
hardware-specific implementation techniques as well as high-level
operations of different types of analyses. At its core lies a lan-
guage for defining nested, collection-oriented intermediate repre-
sentations (IRs). Frontends produce programs in their IR flavors
defined in that language, which get optimized through a series of
rewritings (possibly changing the IR flavor multiple times) until
the program is finally expressed in an IR of platform-specific oper-
ators. While reducing the overall implementation effort, this also
improves the interoperability of both analyses and hardware plat-
forms. We have used CVM successfully to build specialized back-
ends for platforms as diverse as multi-core CPUs, RDMA clusters,
and serverless computing infrastructure in the cloud and expect
similar results for many more frontends and hardware platforms
in the near future.
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Figure 1: Illustration of today’s data science tools.

1 INTRODUCTION
A major goal of systems design has always been to translate in-
creased hardware performance into higher application performance.
This consists more and more of exploiting specialized hardware
across the entire stack—be it parallelization on the level of SIMD [36,
50, 61], multi-cores [6, 12, 16, 44], NUMA [5, 35, 38], andmachines [30,
39, 40, 51, 53, 60], or support for accelerators such as GPUs [1, 20,
23, 26, 47], FPGAs [18, 28, 41, 42], or specialized IO devices includ-
ing NVMe-based storage [25, 59] or RDMA-capable networking [7,
8, 19, 37, 54]. With the advent of data science and its more diverse
and more complex types of analytics, the challenge for system de-
signers has been extended to yet another dimension.

While there is ample research on how to exploit each hardware
platform in isolation, practitioners are struggling to build systems
that support more than one or a few of them at the same time. Fig-
ure 1 illustrates this problem. It shows the most popular Python
packages for numerous types of analytics with the size of datasets
they support as an indication of what platforms they run on. It is
clear no single system currently covers both the breadth of ana-
lytics and all dataset sizes. Using RDBMSs and SQL can support
datasets of virtually any size, but the packages for linear algebra,
graph analytics, andmachine learning are mainly built for running
on a single machine, thus supporting datasets of at most some tens
of gigabytes. TensorFlow [1] has arguably the largest coverage, but,
to the best of our knowledge, is not designed for petabyte-scale
2Most contributions of this author took place while affiliated with ETH Zurich.
3The contributions of this author took place while affiliated with ETH Zurich.
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analytics and has only limited support for graph analytics and re-
lational algebra. Finally, systems scaling to racks or clusters, such
as Spark [60], do support larger datasets; however, if (mis)used in
a single-machine setup, they are typically one or several orders
of magnitude less efficient. Overall, tools tend to specialize in a
relatively narrow type of analysis/platform combination. As a con-
sequence, individual users are forced to switch tools constantly as
their datasets, focus of investigation, or hardware change. At the
same time, many basic system components are reimplemented in
each of the specialized systems leading to both higher implemen-
tation effort and less efficient implementations.

To overcome that situation, this project aims to provide system
designers with a unified framework across both hardware plat-
forms and target domains.We hypothesize that all (or at least most)
modern hardware platforms and types of data analysis used by data
scientists today are similar enough to be expressed in intermediate
representations (IRs) based on the common abstraction of (nested)
transformations of (nested) collections. As we explain in more de-
tail below, analytics in relational algebra, graph analysis, linear al-
gebra, and machine learning work on relations of records, set of
vertices and edges, vectors and matrices of numbers, and bags of
samples, respectively, all of which are some sort of “collection” of
“tuples” of “atoms.” Also implementations, including the most op-
timized forms, can be described naturally in a nested way: inner
loops can be seen as the transformation of individual atoms of one
collection into another and the orchestration code around them as
the nested compositions of these transformations.

Based on this hypothesis, we are building the “Collection Vir-
tual Machine” (CVM), a compiler framework for multi-frontend
multi-backend data analysis. Its core is a language for defining
collection-oriented intermediate representations (IRs) that consists
of arbitrary collection-based “instructions” that we call “opera-
tors.”1 Frontends languages thenmap to a program in an IR defined
in this language, typically using high-level operators that may be
in part specific to that frontend. Similarly, the backend of a partic-
ular hardware platform can define its instructions expressing the
low-level implementation techniques required to maximize perfor-
mance. Since programs at all levels of abstraction are expressed
in the same IR language, rewritings between them can be imple-
mented in a common optimizer framework to bring the input pro-
gram into an optimized, platform-specific form.

We have used CVM for the IRs of three different systems:
JITQ [4], specialized for multi-core CPUs, Modularis [31], special-
ized for RDMA clusters, and Lambada [43], specialized for server-
less cloud functions. While the three platforms are diverse and re-
quire different, specific implementation techniques, they not only
share CVMs compiler infrastructure but also the overwhelming
majority of their IRs and the rewritings through which they are
compiled. Furthermore, they share a generic Python frontend al-
lowing data scientists to change platforms seamlessly. In exper-
iments, we show that the multi-core and RDMA-based systems
are roughly on par with mature systems specialized for these plat-
formswhile the cloud backend is up to an order ofmagnitude faster
and up to two orders of magnitude cheaper than two commercial
RDBMSs optimized for the same use case.

1We use the terms interchangeably in this document.

2 RELATEDWORK
Our work draws heavy inspiration from relational database sys-
tems. Consequently, all work on query optimization and execu-
tion techniques are relevant because we are designing CVM such
that all of them could be implemented in its IR language. This
includes work from the 90s on relational algebra on nested rela-
tions [55] and sequences [52], as well as more recent efforts on
array database systems [11]. Similarly, there are large bodies of
research on domain-specific implementation techniques for linear
algebra [22], machine learning algorithms [58], and graph analysis
algorithms [15] and we design CVM such that it can also incorpo-
rate these techniques.

There have been numerous projects increasing the breadth of
systems using a mix of compiler and query optimization tech-
niques. For example, TensorFlow XLA [34] is a high-level compiler
built to support different computing platforms including accelera-
tors. To combine different types of analysis in one system, systems
like LaraDB [27], LevelHeaded [2], and AIDA [14] integrate rela-
tional algebra with linear algebra in a single abstraction. Systems
like LB2 [57] and EmptyHeaded [3] do the same with relational
algebra and graph analytics. Raven [29] uses an IR that enables
cross-optimization and integrated execution of ML inference and
relational queries. To target even more domains, Tupleware [13]
and Weld [46] use query optimization and just-in-time compila-
tion to run algorithms from different domains efficiently but the
first is restricted to optimizations possible on UDFs and the IR of
the latter is fundamentally limited to shared-memory systems. Sys-
temDS [9] builds on SystemML’s [10] compilation toolchain and
can run a wide range of data science processes on multiple back-
ends, including local CPU/GPU and Spark. Similar systems include
Musketeer [21] and Vodoo [49], as well as the works of Kunft et
al. [32], Gubner [24], and Pirk and Giceva [48]. While the above
are built on some kind of IR, they all have in common that their
IR consists of a fixed set of instructions, making it difficult to ex-
tend with further frontends and backends and thus support a more
narrow analysis/platform combination than CVM targets. Other
systems, like Naiad [45], achieve an impressive breadth of applica-
tions and performance, but by means of a fixed, low-level program-
ming model rather than a compiler framework. More recently, the
MLIR [33] compiler framework aims to provide tools and abstrac-
tions for expressing, transforming, and composing of a wide range
of intermediate representations and compilation to a broad range
of hardware targets, including ML accelerators, but with a focus
on deep learning on GPUs and TPUs.

Researchers have also advocated for the opposite direction,most
notably Stonebraker andÇetintemel [56], who argued that the “one-
size-fits-all” paradigm is not feasible anymore. We believe that the
work referenced above shows that covering several types of work-
loads in one system is, in fact, already possible and hope to extend
the coverage even further with CVM.

3 THE COLLECTION VIRTUAL MACHINE
3.1 Architecture Overview
CVM purposefully defines a language of intermediate representa-
tions instead of a concrete IRwith a fixed set of instructions. It fixes
how instructions and collection types look like—notwhich of them
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Figure 2: Architecture of the Collection Virtual Machine. El-
ements composing Lambada [43] andModularis [31] are out-
lined in red and dashed blue lines, respectively.

exist. This allows both frontends and hardware-specific backends
to define the precise building blocks they need and still evolve as
hardware, applications, and experience in IR design make progress.

Figure 2 illustrates an overview of the different components of
the Collection Virtual Machine (CVM) and the workflow of trans-
forming a frontend program into an executable form. The figure
shows several frontend languages and interfaces that deal with col-
lections but is not meant to be exhaustive. Analyses in the front-
ends are expressed as or translated into an intermediate represen-
tation (IR) defined in the CVM IR language. This initial transla-
tion should be as thin as possible. Frontends may define their own
IR flavor including high-level operators, collection types, or data
types, for example to perform domain-specific optimizations in a
frontend-specific rewriting pass. The frontend and backends we
implemented so far are highlighted in the figure.

Once in a CVM IR, the programundergoes a succession of rewrit-
ings that bring it into an optimized, executable form.Which rewrit-
ings are applied and in which order depends on the frontend and
target backend(s) of the system. During the rewriting, the program
may change the IR flavor several times, typically (but not necessar-
ily) going from more high-level IRs to more low-level ones and
intermediate programs may contain a mix of different IR flavors.
Since all programs use IRs defined in the same IR language, mix-
ing both IRs and rewritings is seamless such that system builders
can share their implementation effort. For example, the three sys-
temswe have implemented so far share a common set of rewritings
that produce generic data-parallel programs in a common IR and
then rewrite some of the instructions as different instructions or
sequences thereof in their respective target-specific IR flavors.

Finally, the program is in a form where its instructions corre-
spond directly to the executable building blocks of the target back-
end. Like in compilers, we call the translation process of the final
IR flavor into that executable form lowering. For example, a tra-
ditional query compiler would lower the IR of physical operators
into an execution plan. In JITQ, Modularis, and Lambada, we use

a combination of two lowerings: we lower pipelines representing
the data paths into nativemachine code using just-in-time compila-
tion and the surrounding orchestration logic into a dataflow-based
execution layer.

3.2 IR Language
All IRs in CVM are built on the mental model of an abstract virtual
computer that we call the Collection Virtual Machine. The virtual
machine has an unlimited number of registers that store collections
and executes linear sequences of instructions called programs. Any
transformation or execution of its IRs must preserve the behavior
as if it was executed on that machine.

The IR language allows to define IR flavors consisting of a set of
instructions and collection types. All collection types are generic
with the following recursive structure:

item := { atom | tuple of items | collection of items } , (1)
where an atom is an undividable value of a particular domain, a
tuple is a mapping from a domain of names to items, and a collec-
tion is the generalization of any (abstract or physical) data type
holding a finite, homogeneous multiset. We denote tuple types by
⟨fieldName0 : ItemType0, . . . , fieldNameK : ItemTypeK⟩ and col-
lection types by CollectionType⟨ItemType⟩.

Instructions (or operators) defined by any IR flavor have the fol-
lowing structure: They read the collections from zero or more pre-
viously assigned registers and assign results to zero or more previ-
ously unassigned registers; registers are hence immutable and pro-
grams always in static single assignment (SSA) form. Instructions
may be parameterized with (constant) items and programs. If an
instruction takes a program as parameter, we call it a higher-order
instruction. Any instruction is thus of the following form2:

Out1, …, Out𝑚 ← InstRuction(Para1, …, Para𝑘 )(In1, …, In𝑛)
where In𝑖 and Out𝑖 are the input and output registers, respectively,
and Para𝑖 the parameters (i.e., constant items and programs).

3.3 Collection Types
We now show how to define several collection types in CVM’s
IR language to express both abstract and physical data structures
from various domains. These examples are meant to show the ex-
pressiveness of the IR language rather than a final set of types and
we expect to add more frontend and backend-specific types as we
implement other IRs in the future. Table 1 shows the correspond-
ing data types.
Abstract collection types. First, collections can represent ab-

stract data types, like the ones shown in the upper half of the table.
To that aim, we define the generic collection types Set, Bag, Seq (for
sequences), kDSeq (for k-dimensional sequences), and Seq∞ (for
unbounded sequences). We use them to compose high-level data
types of various domains. For example, relations from the origi-
nal set-based relational algebra (RA) are simply Sets of tuples of
atoms. For this domain, the fact that items may be tuples is essen-
tial as their field names and types represent the schema of the re-
lation. To express the more practical bag-based relations (Bag RA,
which is used in our current frontend), sorted relations (from re-
lational algebra on sequences, Seq. RA), and relations in non-first
2For brevity, we omit empty components.
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Domain Data structure CVM data type

RA 𝑅(𝐴1 : 𝐷1, …𝐴𝑘 : 𝐷𝑘 ) Set⟨𝐴1 : 𝐷1, …𝐴𝑘 : 𝐷𝑘 ⟩
Bag RA 𝑅(𝐴1 : 𝐷1, …𝐴𝑘 : 𝐷𝑘 ) Bag⟨𝐴1 : 𝐷1, …𝐴𝑘 : 𝐷𝑘 ⟩
Seq. RA 𝑅(𝐴1 : 𝐷1, …𝐴𝑘 : 𝐷𝑘 ) Seq⟨𝐴1 : 𝐷1, …𝐴𝑘 : 𝐷𝑘 ⟩
RA (NF2) 𝑅1 (𝐴 : 𝑅2 (…)) Bag⟨𝐴 : Bag⟨…⟩⟩

𝑅(𝐴1 : (𝐴2 : 𝐷)) Bag⟨𝐴1 : ⟨𝐴2 : 𝐷⟩⟩
Streaming 𝑆𝑇 (𝑇, 𝐷) Seq∞⟨⟨𝑡 : Num, 𝑒𝑣𝑒𝑛𝑡 : 𝐷⟩⟩
LA 𝑣 ∈ R Seq⟨Num⟩

𝑀 ∈ R2 2DSeq⟨Num⟩ or
Seq⟨Seq⟨Num⟩⟩

𝑀 ∈ R𝑘 kDSeq⟨Num⟩ or
Seq⟨… Seq⟨Num⟩…⟩

Graph 𝐺 = (𝑉 , 𝐸) Set⟨ID⟩ and
Set⟨⟨𝑠𝑟𝑐 : ID, 𝑑𝑠𝑡 : ID⟩⟩

row-store struct{ D1 field1; …} ⟨𝑣1 : 𝐷1, 𝑣2 : …⟩
struct{ D1 field1; …}* Vec⟨⟨𝑣1 : 𝐷1, 𝑣2 : …⟩⟩

col-store struct{ D1* col1; …} Single⟨⟨𝑣1 : Vec⟨D1⟩, …⟩⟩
dense LA float* A Vec⟨float⟩

struct{ int size[2]; Single⟨⟨d1 : int, d2 : int,
float* A; } 𝐴 : Vec⟨float⟩⟩⟩

sparse LA struct{ int nnz; Single⟨⟨𝐴 : Vec⟨float⟩,
float* A; int* I; I : Vec⟨int⟩,
int* O; } O : Vec⟨int⟩⟩⟩

SIMD __m256 v Array8⟨float⟩
𝑅, 𝑅𝑖 : relation; 𝐴, 𝐴𝑖 : attribute/field name; 𝐷 , 𝐷𝑖 : atomic domain

Table 1: Abstract (top) and physical (bottom) collection
types.

normal-form (NF2), i.e., nested relations, we simply use Bag or Seq
instead of Set and allow non-atomic fields, respectively. Streams of
timestamped events are Seq∞ of two-dimensional tuples of times-
tamp and event domain. Similarly, we define vectors, matrices, and
higher-dimensional tensors from linear algebra (LA), as well as the
vertices and edges of graphs. In those domains, the items in the col-
lections have no further structure but are just some type of number
(Num) or vertex identifier (ID).

Physical collection types. Second, collections can express
physical data layouts as well. As a basic building block, we de-
fine the generic type Vec (for vector) to represent an array of items
in a single contiguous block of memory. Furthermore, we express
fixed-width records with ordered fields (like structs in C) as tu-
ples where the lexicographical order of the field names defines the
physical order in the layout.

This allows us again to compose many common physical data
layouts, such as those shown in the lower half of the table. Both
row-store and column-store layout of relations are typically im-
plemented as array of structs and struct of arrays, which we can
express with tuples and Vec. The three systems we have built so
far use both relation types in their IRs. Notice that we define the
generic type Single as a singleton collection holding just one tu-
ple as a helper to store a group of collections in a single register.
Similarly, the data structures used typically for linear algebra (both
dense and sparse) are composed of arrays and structs, so we can ex-
press themwith the same data types as shown in the table.We only

show the sparse matrix format CSR (for “compressed sparse row”),
which consists of an integer for the number of non-zero elements
and three arrays (the non-zero elements, their column indices, and
the offsets of each row into the first two), but the other common
formats can be defined analogously.

Finally, as shown in the table, we define ArrayN as sequence
with compile-time size 𝑁 to express vectors of machine words for
SIMD-style processing. The same collection type can also be used
to model a row of a narrow dense matrix to enable compile-time
optimizations for that special case.

The actual physical representation is decided by the lowering.
For example, our three systems have an execution layer that stores
tuples of fixed-width fields in the memory layout of a C-arrays of
C-structs and thus require the final IR to contain only Sequences of
anonymous tuples, which are then lowered accordingly. For that
to work, we activate a sequence of rewriting passes that bring the
programs into the expected form. We discuss these rewritings in
more detail later in this section.
Custom collection types. Finally, we can define new collec-

tion types to support arbitrary physical formats and data struc-
tures. For example, we have defined collection types for Apache
Arrow and Parquet, and other formats such as Protocol Buffers or
Avro could be supportedwith the same approach.This allows front-
ends to support existing data formats and backends to use special-
ized, highly-tuned data structures as data types in their respective
IR flavor.

3.4 Instructions
As described above, instructions defined in the CVM IR language
transform collections into other collections. Instructions may have
restrictions on the item types of their input collections and the
types of their outputs may depend on their input types. Broadly
speaking, the level of abstraction of instructions corresponds to the
level of abstraction of the collections they work on. Table 2 shows
instructions and their input and output types of various levels of
abstractions.
High-level instructions. The upper part of the table shows

high-level, domain-specific instructions that typically constitute
the IRs used for the initial translation of user-facing programs. For
example, an IR for a relational query processor could define the
usual relational operators on this level. The table shows the defi-
nition of projection (PRoj), which is only defined on collections of
tuples.3 If the collection is a sequence (Seq) or set (Set), then so is
the output. While the projection only restricts the field names of
the tuples, the extended projection (ExPRoj) also allows us to com-
pute new fields. We also define a Map instruction, which we use in
our generic dataflow frontend and which, in contrast to the projec-
tions, can work on arbitrary item types. We define instructions for
other relational or generic dataflow operators in much the same
way as PRoj and Map.

As an example of an IR of a different application domain, the
table shows an instruction for matrix-matrix multiplication (MM-
Mult). We can define instructions for other basic operations of
linear algebra including multiplications of tensors of different di-
mensions, inversion, transposition, etc. analogously. This allows

3However, the fields of the tuples may consist of arbitrary items.
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Instruction Input type(s) Output type(s)

PRoj(𝐴1, …𝐴𝑘 )(𝐶) 𝐶 : Coll⟨𝐴1, …𝐴𝑘 …⟩ Bag⟨𝐴1, …𝐴𝑘 ⟩
𝐶 : Set⟨𝐴1, …𝐴𝑘 …⟩ Set⟨𝐴1, …𝐴𝑘 ⟩
𝐶 : Seq⟨𝐴1, …𝐴𝑘 …⟩ Seq⟨𝐴1, …𝐴𝑘 ⟩
𝐶 : Seq∞⟨𝐴1, …𝐴𝑘 …⟩ Seq∞⟨𝐴1, …𝐴𝑘 ⟩

ExPRoj({𝐴′𝑖 , 𝑓𝑖 }𝑙 )(𝐶), 𝐶 : Coll⟨𝐴1, …𝐴𝑘 ⟩ Bag⟨{𝐴′𝑖 : 𝐼𝑖 }𝑙 ⟩
𝑓𝑖 : {𝐴𝑗 }𝑘 → 𝐼𝑖

Map(𝑓 : 𝐼1 → 𝐼2)(𝐶) 𝐶 : Coll⟨𝐼1⟩ Bag⟨𝐼2⟩
𝐶 : Seq⟨𝐼1⟩ Seq⟨𝐼2⟩
𝐶 : Seq∞⟨𝐼1⟩ Seq∞⟨𝐼2⟩

MMMult(𝐶1, 𝐶2) 𝐶𝑖 : 2DSeq⟨𝑁𝑢𝑚⟩ 2DSeq⟨𝑁𝑢𝑚⟩
Loop(𝑛, 𝑃 )(𝐶1, …𝐶𝑘 ) 𝐶𝑖 : Coll𝑖 ⟨𝐼𝑖 ⟩ 𝐶𝑖 : Coll𝑖 ⟨𝐼𝑖 ⟩

𝑃 : {𝐶𝑖 }𝑘 → {𝐶𝑖 }𝑘
While(𝑃 )(𝐶1, …, 𝐶𝑘 ) 𝐶𝑖 : Coll𝑖 ⟨𝐼𝑖 ⟩ 𝐶𝑖 : Coll𝑖 ⟨𝐼𝑖 ⟩

𝑃 : {𝐶𝑖 }𝑘 → B, {𝐶𝑖 }𝑘
Cond(𝑃 )(𝐶1, …, 𝐶𝑘 ) 𝐶𝑖 : Coll𝑖 ⟨𝐼𝑖 ⟩ 𝐶 ′𝑗 : Coll

′
𝑗 ⟨𝐼 ′𝑗 ⟩

𝑃 : {𝐶𝑖 }𝑘 → B, {𝐶′𝑗 }2𝑙
Call(𝑃 )(𝐶1, …, 𝐶𝑘 ) 𝐶𝑖 : Coll𝑖 ⟨𝐼𝑖 ⟩ 𝐶 ′𝑗 : Coll

′
𝑗 ⟨𝐼 ′𝑗 ⟩

𝑃 : {𝐶𝑖 }𝑘 → {𝐶′𝑗 }2𝑙
ConcuRExecute(𝑃 )(𝐶) 𝐶 : Coll⟨𝐼1⟩ Bag⟨𝐼2⟩

𝑃 : Single ⟨𝐼1 ⟩
→ Single ⟨𝐼2 ⟩

𝐶 : Seq⟨𝐼1⟩ Seq⟨𝐼2⟩

ScanVec(C) 𝐶 : Coll⟨Vec⟨𝐼 ⟩⟩ Seq⟨𝐼 ⟩
MatVec(C) 𝐶 : Coll⟨𝐼 ⟩ Single⟨Vec⟨𝐼 ⟩⟩
SplitVec(𝑛)(C) 𝐶 : Coll⟨Vec⟨𝐼 ⟩⟩ Bag⟨Vec⟨𝐼 ⟩⟩

𝐶 : Seq⟨Vec⟨𝐼 ⟩⟩ Seq⟨Vec⟨𝐼 ⟩⟩
BuildHTable(C) 𝐶 : Coll⟨𝑇 ⟩, Single⟨HTab⟨𝑇 ⟩⟩

𝑇 : ⟨𝑘𝑒𝑦 : 𝐼1, 𝑣𝑎𝑙 : 𝐼2⟩
PRobeHTable(C, H) 𝐶 : Coll⟨𝑇1⟩, Bag⟨𝑇3⟩

𝐻 : Single⟨HTab⟨𝑇2⟩⟩,
with 𝑇1 .key = 𝑇2 .key

𝐴𝑖 : attribute/field name;𝐶 ,𝐶𝑖 : collection type; 𝐼 , 𝐼𝑖 : item type; 𝑛 ∈ N;
𝑓 , 𝑓𝑖 : function type; 𝑃 : nested program; B = {⊤,⊥};𝑇 ,𝑇𝑖 : tuple type

Table 2: Domain-specific, control-flow-like, and low-level in-
structions.

high-level optimizations based onmathematical and other domain-
specific equivalences.

Notice how our definition of collections on different types of
items allows expressing linear algebra and relational algebra in the
same framework. We can convert collections of one domain to the
other by packing (or unpacking) each item into (from) a tuple with
a single field, so our IR allows combining programs of various front-
ends and doing optimizations across interface barriers.
Control flow. Themiddle part of the table shows instructions

we use to express control-flow-like behavior. Notice that the CVM
IR language does not allow for traditional control flow such as
jumps. This is done by design as jumps make it hard to understand
the semantics of a program, which makes many optimizations dif-
ficult or impossible to achieve. However, we can use the capability
of defining higher-order instructions to achieve similar effects:The
table gives the example of a Loop instruction that is parameterized

with a nested program and a constant number 𝑛 and executes the
program 𝑛 times. It reads its input through input registers as any
other instruction, forwards them as initial input of the inner pro-
gram, and then uses the result registers of the previous run as new
input. The final result of the Loop instruction corresponds to what
the RetuRn instruction of the last run of the inner program returns.
While and Cond (for conditional expression) can be defined in a
similar way.4

Parallel execution may also be counted as control flow. The ta-
ble shows the ConcuRRentExecute instruction, which we use to
represent parallelism in the three systemswe have implemented so
far. It has similar semantics as the higher-order instruction Map,
i.e., it executes a program on each input item to compute an out-
put item, but guarantees that these programs are executed concur-
rently such that the different executions can exchange data among
them. Furthermore, each system has its own, platform-specific ver-
sion of ConcuRRentExecute, which implements the concurrent
execution of threads, MPI workers, and serverless cloud functions,
respectively.
Low-level instructions. Finally, low-level instructions repre-

sent specific building blocks of different backends. On this level,
we follow the philosophy to make these operators as small as pos-
sible to make them more generic and hence reusable. Our goal is
to express cleverness as a sophisticated combination of simple op-
erators instead of a simple combination of sophisticated operators.
We refer to our work on Modularis [31] for details. For example,
we have a scan operator, a materialize operator, and potentially
a split operator (for parallelization) for each of the backend-level
collection types mentioned above (the table shows those of Vec).
Similarly, we define a build and a probe operator for each hash ta-
ble type that we implement (some of which are tuned for a very
specific case).

Furthermore, many if not all low-level tuning techniques devel-
oped by the database community in the last years can be encapsu-
lated as operators:
• hardware-conscious algorithms and data structures,
• light-weight compression schemes,
• build and probe of spatial indices or other domains, and
• predicated or vectorized scans, to name just a few.

Notice that all of them fall into our structure of collection-based
instructions. Our IR language thus makes it possible to use very
specialized implementation techniques and still represent them in
a common abstraction.

3.5 Lowerings to Execution Layers
The CVM compilation toolchain can be used to target any execu-
tion layer. As mentioned before, a traditional relational query en-
gine could define its physical query plans as an IR and lower pro-
grams in that IR into an execution plan composed of its executable
operators. For example, we could use MonetDB’s execution layer
by translating programs through a series of rewritings into an IR
that replicates the MonetDB Assembly Language (MAL) and then
lowering them into actual MAL for execution.

4Thefirst register returned by the nested program contains a Boolean value indicating
whether or not to stop the loop or which branch to return, respectively.
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Algorithm 1 Initial CVM program of TPC-HQuery 6.
𝑝 : predicate on “l_shipdate”, “l_discount”, and “l_quantity”
𝑇lineitem: tuple corresponding to lineitem schema

1: program TpchQ6Seq(lineitem : Coll⟨𝑇lineitem⟩)
2: filtered ← Select(𝑝)(lineitem)
3: projected ←

ExPRoj(“l_eprice” · “l_disc”→ “x”)(filtered)
4: result ← AggR((“x”, sum) → “revenue”)(projected)
5: RetuRn(result)

For JITQ, Modularis, and Lambada, we use a common execution
layer for the data paths and specialized components for the exe-
cution of and communication among parallel workers. The com-
mon part deals with the most fine-grained level, where operators
pass individual tuples between each other. In a rewriting pass, we
extract tree-shaped parts of a program and translate them into
pipelines of Volcano-style iterators. To eliminate the overhead of
this operator interface and to allow low-level optimizations across
operator boundaries, we just-in-time-compile each pipeline to na-
tive machine code. The inputs and outputs of each pipeline consti-
tute necessary materialization points of the original program.

In order to lower instructions on unbounded streams, the exe-
cution layer needs to support streaming, of course. However, we
believe that implementation techniques for streaming are in large
parts suitable for finite collections as well and thus represent an
interesting lower target for a wide variety of frontends.

3.6 Rewritings
The rewriting mechanism of CVM is highly flexible and config-
urable, such that every frontend/backend combination can do the
rewritings that are best suited for that combination. For the differ-
ent IR flavors to co-exist, at least during compilation, rewritings
must work in the presence of collection types and instructions of
any IR. Optimizations (or lowerings) that require a particular prop-
erty (such as tree-shaped data dependencies) thus either have to
rewrite the program to establish that property first or work only
on those parts of a program where the property holds.

Algorithms 1 and 2 illustrate how the rewriting for generic par-
allelization works taking Query 6 of the TPC-H benchmark as an
example. The initial program (Tpch6Seq) consists of a selection,
a computation, and a scalar aggregation. Our rewriting rule first
replaces the usage of the input relation (lineitem) with a Split fol-
lowed by an empty ConcuRRentExecute and a Scan.5 Notice that
the sequence of these three operators is a logical no-op. Then it
applies rules that expand the ConcuRRentExecute in a way that
preserves the semantics: It moves Select and ExPRoj inside, while
it copies AggR as pre-aggregation. If an unknown instruction had
been encountered, then the rule would leave it as is. The resulting
parallelized program is shown by Algorithm 2.6 As mentioned ear-
lier, our three systems each continue with a target-specific rewrit-
ing pass that rewrites the program in Algorithm 2 into an IR for
thread-parallelism, RDMAclusters, or cloud functions, respectively.

5This intermediate program is not shown.
6The inner program of the ConcuRRentExecute happens to be the same as the orig-
inal program, which is why we refer to Tpch6Seq instead of spelling it out.

Algorithm 2 Parallelized CVM program TPC-HQuery 6.
1: program TpchQ6PaR(lineitem : Coll⟨𝑇lineitem⟩)
2: parts← Split(𝑝)(lineitem)
3: part_results← ConcuRExecute(TpchQ6Seq)(parts)
4: unnested ← Scan(part_results)
5: result ←

AggR((“revenue”, sum) → “revenue”)(unnested)
6: RetuRn(result)

In the future, we plan to extend the rewritings considerably. We
think that all traditional query optimization techniques from data-
base systems can be done on CVM IRs, including join reordering,
index selection, etc.

4 EXPERIMENTS
In this section, we show the experimental results of CVM on three
different hardware platforms: in-memory, distributed, and server-
less. Although CVM is not always the fastest solution in the com-
parison, the goal of the experimental study is not to focus on raw
performance but rather to show the flexibility of our frontends
and backends through the use of platform-specific operators and
rewrite rules. In general, CVM has at worst a reasonable perfor-
mance overhead compared to state-of-the-art data processing sys-
tems, while it is often on par or even faster. For all experiments
described below, unless otherwise stated, we run each query four
times, use the first run as a warm-up and then report the average
of the other runs.
In-memory. For the in-memory experiments, we use twowork-

loads: (1) TPC-H queries with scale factor 10, and (2) the k-means
clustering algorithm with a synthetic dataset comprising of 224 5-
dimensional points. The numbers for HyPer and Flare are taken
from [17]. For k-means, we choose the most popular ML Python
package, scikit-learn (“sklearn”), as a competitor and we report
the time of a single iteration. Both experiments were run on an
Intel Xeon E5-2630 v3 CPU running at 2.4 GHz. We report the ex-
ecution times for TPC-H queries (left) and the k-means algorithm
(right) in Figure 3.

We observe that the column-wise operations performed byMon-
etDB for Q1 have a negative impact on the running time. JITQ
lowers the same query into a single pipeline, which leads to pro-
ducing the result in a single pass. We also observe that when the
input data are largely reduced due to very selective filters, such as
in Q19, JITQ outperforms the competitors. We believe that imple-
menting other missing optimizations like support for narrow data
types, a more sophisticated optimizer, and index-based grouping
will make our performance on par for other queries as well.

For k-means, we achieve the performance of the hand-written
C++ library used under the hood in scikit-learn, mainly due to a
plan analysis that enables run-based aggregation.The experiments
show that the combination of high-level analysis and just-in-time
compilation achieves in-memory processing speed that matches
hand-written code performance.
Distributed RDMA cluster. For the distributed experiments,

we use eight machines, each with two CPUs Intel Xeon E5–2609
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Figure 3: TPC-H (SF 10) and k-means on a single machine.
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Figure 4: TPC-H (SF 500) on an RDMA cluster.

running at 2.40 GHz and 128GiB of RAM. The machines are con-
nected through an InfiniBand network with a Mellanox QDR HCA
network card.We use TPC-H querieswith scale factor 500 and com-
pare against two popular distributed systems, MemSQL and Presto
which were configured to use the entire cluster. For Presto, we use
HDFS nodes with default configurations to store TPC-H data.

Figure 4 shows the running times for executing the TPC-H
queries across the three systems. To have a fair comparison with
Presto, we also include the time thatModularis needs to read the in-
put data. We observe that for Q4 and Q12, Modularis is on par with
MemSQL while MemSQL is 33 % and 25 % faster than CVM on Q14
and Q19, respectively. Our system is 6× to 9× faster than Presto,
depending on the query. Modularis’ performance is thus close to
a highly optimized in-memory distributed database system and al-
most an order of magnitude better than that of a popular big-data
SQL query engine.

Additionally, in contrast to the other systems, CVM supports
this platform only by implementing a few hardware-conscious op-
erators (i.e., MPIExecutor, MPIExchange, MPIHistogram) and by
adding additional rewrite rules for incorporating such operators.
For instance, we wrote a specialized version of ConcurrentEx-
ecute called MPIExecutor that uses OpenMPI to distribute pro-
cesses among the machines in the cluster.
Serverless functions. Finally, we show how Lambada exe-

cutes analytical workloads on a serverless platform. Figure 5 shows
the running time and monetary cost of TPC-H queries on server-
less cloud services. To showcase the elasticity of serverless comput-
ing, we use TPC-H data at scale factor 1000 and decide to use as
many serverless workers needed to enable running queries with in-
teractive latencies. Compared to other serverless solutions, Google
BigQuery and Amazon Athena, Lambada is up to an order of mag-
nitude faster and up to two orders of magnitude cheaper. This
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Figure 5: TPC-H (SF 1k) on serverless platforms.

shows that the addition of new lowerings for this platform is or-
thogonal to existing optimizations.

It is worth restating that the frontend programs implementing
the queries are the same in all CVM-based platforms; only the com-
pilation target is changed through a configuration switch.This trig-
gers the use of different rewrite rules, which in turn make use of
different, platform-specific operators. For instance, Lambada low-
ers ConcurrentExecute into ConcurrentLambdaExecute, an op-
erator that invokes AWS Lambda workers. Similarly, it transforms
other operators intoAmazon S3-specific operators. Other optimiza-
tions such as selections and projections can be pushed into the op-
erator that reads from Amazon S3. Adding such functionality in
the competing systems would possibly imply major code rewrites.

5 DISCUSSION AND FUTUREWORK
While the results shown in this paper are very promising and sug-
gest that CVM can indeed solve the problem it was designed for, a
large number of questions is still open. In our opinion, some of the
most interesting include:
Modular execution layer. What should be the executable

building blocks of an ideal execution layer for CVM? As motivated
through-out the paper, each building block should be simple and
there should be few of them in order to keep their implementation
effort low. However, they should still deliver high performance
and be able to express arbitrary collection-based computations. In
our on-going effort on Modularis [31], we are pursuing this ques-
tion in the context of clusters and main-stream CPUs, but as we
extend CVM to other frontends and backends, we expect new re-
quirements to arise.
Intermediate IRs. What are good IR flavors for intermediate

compilation stages? While we believe that frontend and backend-
specific IR flavors are necessary for optimizations on these levels,
we also believe that common intermediate IR flavors would add
significant value to CVM. The more common aspects of frontend
and backends they can capture, the more optimization rules can be
shared across systems, which would, hence, all benefit from them.
Tractable optimization space. Related to the previous point

is the question of how to keep query optimization tractable. Many
traditional query optimization techniques for relational database
systems rely on the fact that there is a small number of operators
such that a large number of query plans can be enumerated and
compared. In contrast, the number of IR instructions in CVM is—
by design—much larger (and not even defined in advance). We be-
lieve that this is not a contradiction: traditional query optimization
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should take place on a high-level IR flavor where the number of in-
structions is still small. But even with this in mind, there are still
many possibilities to design the exact layering of optimizations at
different levels of abstractions. Exploring them represents an ex-
citing direction for future work.
Streaming. How to implement streamprocessingwithin CVM?

As we sketch with the examples on Seq∞ above, the CVM IR lan-
guage is able to express unbounded collections just like any other
collection type. However, in order to tap into the full potential
of CVM, high-level instructions on such unbounded collections
should be translated at least in large parts into the same lower-
level instructions as those on finite ones, which in turn should be
executed by the same execution layer. We have started to work in
this direction, but many challenges are yet to be overcome.

We believe that many of these questions transcend CVM and
are of general interest to the field. At the same time, we think that
CVM represents an excellent basis to answer them: it is designed
to be as extensible as possible, making it easy to add and evolve
IRs, while still allowing to build on common concepts and tools.

6 CONCLUSIONS
In this paper, we proposed the Collection Virtual Machine, an ab-
straction for system designers that keeps supporting the growing
number of combinations of domain-specific frontends and hard-
ware backends tractable.We have used CVM for the IRs of three dif-
ferent systems: JITQ [4], Modularis [31], and Lambada [43]. While
their target platforms are diverse, we have shown how CVM al-
lows the three systems to share large parts of their IRs and rewrit-
ings in a common framework and still get comparable performance
with systems designed from scratch for the respective hardware
platforms. In the near future, we plan to add other frontends, a
streaming execution model, and more hardware platforms, where
we expect similar results.
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